مقایسۀ عملکرد مدل درختی M5 با مدلهای شبکۀ عصبی مصنوعی و ماشین بردار پشتیبان در استخراج منحنی تداوم جریان مطالعۀ موردی: ایستگاه خزانگاه رودخانۀ ارس
Authors
Abstract:
یکیاز مهمترینو پرکاربردترینعلائمپاسخهیدرولوژیکحوزه، منحنیتداومجریان استو درکاربردهایهیدرولوژیکیبیشماری برای آنالیز فراوانیجریانهایکمینهو سیلابمورد استفادهقرار میگیرد. برای نمایش محدودۀ کامل دبی رودخانه، از جریانهای حداقل تا حداکثر سیلاب و منحنی تداوم جریان (FDC)استفاده میشود؛ بنابراین استخراج دقیق این منحنیها با حداقل خطا حائز اهمیت فراوانی است. در این مطالعه کارایی مدل درختی M5 در استخراج منحنی تداوم جریان در مقایسه با شبکۀ عصبی مصنوعی و ماشین بردار پشتیبان برای ایستگاه خزانگاه رودخانۀ ارس واقع در استان آذربایجان شرقی بررسی شد.با توجه به نتایج به دست آمده در مدل درختی M5، ترکیب 80% دادهها برای آموزش و مابقی برای تست مدل، بهترین عملکرد را در ارائۀ منحنی تداوم جریان با 992/0R2=، (m3/s)47/5RMSE= و (m3/s) 38/4MAE= نشان داد. با بررسی نتایج مدلهای مختلف شبکۀ عصبی، بهترین مدل با 2 نرون برای لایه مخفی با مقادیر 997/0R2=، (m3/s) 91/3RMSE= و (m3/s) 30/3MAE= بهدست آمد.بررسی عملکرد کرنل RBF مدل ماشین بردار پشتیبان نشان داد که این مدل بهترین عملکرد را در شبیهسازی منحنی تداوم جریان داشت؛ بهطوریکه دارای حداقل مقدار مجذور میانگین مربعهای خطا ((m3/s) 98/2RMSE=)، بالاترین ضریب همبستگی (998/0R2=) و کمترین مقدار خطای نسبی ((m3/s) 66/2MAE=) بود. مقایسۀ نتایج بین انواع مدلهای هوشمند مورد بررسی، بیانگر این است که هر سه مدل در تخمین مقادیر دبی منحنی تداوم جریان عملکرد مناسبی دارند؛ اما مدل درختی M5 به علت سادگی محاسبات و ارائۀ روابط شده، به لحاظ کاربردی قابلیت بیشتری میتواند در استخراج منحنی تداوم داشته باشد.
similar resources
پیشبینی مقادیر بارش ماهانه با استفاده از شبکههای عصبی مصنوعی و مدل درختی M5 (مطالعۀ موردی: ایستگاه اهر)
بارش یکی از مهمترین اجزای چرخۀ آب است و در سنجش خصوصیات اقلیمی هر منطقه، نقش بسیار مهمی ایفا میکند. تخمین مقادیر بارش ماهانه برای اهداف مختلفی چون، برآورد سیلاب، خشکسالی، برنامهریزی آبیاری و مدیریت حوضههای آبریز، اهمیت زیادی دارد. پیشبینی بارش در هر منطقهای نیازمند وجود دادههای دقیق اندازهگیریشدهای مانند، رطوبت، دما، فشار، سرعت باد و غیره است. محدودیتهایی چون، نبود اطلاعات کافی در مو...
full textارزیابی عملکرد شبکۀ عصبی مصنوعی (ann) و ماشین بردار پشتیبان (svm) در تخمین مقادیر روزانۀ تبخیر (مطالعۀ موردی: ایستگاه های هواشناسی تبریز و مراغه)
تبخیر مؤلفهای اساسی در چرخه هیدرولوژی است و نقش مهمی در مدیریت منابع آب دارد. در این تحقیق عملکرد مدلهای شبکه عصبی مصنوعی (ann) و ماشین بردار پشتیبان (svm) در تخمین تبخیر روزانه ارزیابی شده است. دادههای روزانه هواشناسی میانگین دما، سرعت باد، فشار هوا، رطوبت نسبی، بارش، دمای نقطه شبنم، و ساعت آفتابی ایستگاههای سینوپتیک تبریز و مراغه، به منزله ورودی مدلهای ann و svm، برای تخمین تبخیر روزانه ...
full textارزیابی عملکرد روشهای مدل درختی M5 و رگرسیون بردار پشتیبان در مدلسازی رسوب معلق رودخانه
همواره پدیده انتقال رسوب، بسیاری از سازههای رودخانهای و سازههای عمرانی را تحت تاثیر قرار داده و عدم اطلاع از میزان دقیق آن خسارات بسیاری را موجب میشود. از این جهت برآورد صحیح بار رسوبی در رودخانهها از نقطه نظر رسوب، فرسایش و کنترل سیلاب بسیار حایز اهمیت است. در این تحقیق، از دو روش نوین دادهکاوی شامل مدل درختی M5 و رگرسیون بردار پشتیبان برای برآورد بار رسوبی معلق رودخانه اهرچای در مقایس...
full textارزیابی عملکرد شبکۀ عصبی مصنوعی (ANN) و ماشین بردار پشتیبان (SVM) در تخمین مقادیر روزانۀ تبخیر (مطالعۀ موردی: ایستگاههای هواشناسی تبریز و مراغه)
تبخیر مؤلفهای اساسی در چرخة هیدرولوژی است و نقش مهمی در مدیریت منابع آب دارد. در این تحقیق عملکرد مدلهای شبکة عصبی مصنوعی (ANN) و ماشین بردار پشتیبان (SVM) در تخمین تبخیر روزانه ارزیابی شده است. دادههای روزانة هواشناسی میانگین دما، سرعت باد، فشار هوا، رطوبت نسبی، بارش، دمای نقطة شبنم، و ساعت آفتابی ایستگاههای سینوپتیک تبریز و مراغه، به منزلة ورودی مدلهای ANN و SVM، برای تخمین تبخیر روزانه ...
full textپیشبینی مقادیر بارش ماهانه با استفاده از شبکههای عصبی مصنوعی و مدل درختی m5 (مطالعۀ موردی: ایستگاه اهر)
بارش یکی از مهمترین اجزای چرخۀ آب است و در سنجش خصوصیات اقلیمی هر منطقه، نقش بسیار مهمی ایفا میکند. تخمین مقادیر بارش ماهانه برای اهداف مختلفی چون، برآورد سیلاب، خشکسالی، برنامهریزی آبیاری و مدیریت حوضههای آبریز، اهمیت زیادی دارد. پیشبینی بارش در هر منطقهای نیازمند وجود دادههای دقیق اندازهگیریشدهای مانند، رطوبت، دما، فشار، سرعت باد و غیره است. محدودیتهایی چون، نبود اطلاعات کافی در مو...
full textمدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی
Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...
full textMy Resources
Journal title
volume 15 issue 49
pages 129- 142
publication date 2017-12-22
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023